Uranyl mediated photofootprinting reveals strong E. coli RNA polymerase--DNA backbone contacts in the +10 region of the DeoP1 promoter open complex.
نویسندگان
چکیده
Employing a newly developed uranyl photofootprinting technique (Nielsen et al. (1988) FEBS Lett. 235, 122), we have analyzed the structure of the E. coli RNA polymerase deoP1 promoter open complex. The results show strong polymerase DNA backbone contacts in the -40, -10, and most notably in the +10 region. These results suggest that unwinding of the -12 to +3 region of the promoter in the open complex is mediated through polymerase DNA backbone contacts on both sides of this region. The pattern of bases that are hyperreactive towards KMnO4 or uranyl within the -12 to +3 region furthermore argues against a model in which this region is simply unwound and/or single stranded. The results indicate specific protein contacts and/or a fixed DNA conformation within the -12 to +3 region.
منابع مشابه
Changes in the DNA structure of the lac UV5 promoter during formation of an open complex with Escherichia coli RNA polymerase.
By chemical and enzymatic methods, two stable complexes between Escherichia coli RNA polymerase and a linear DNA fragment carrying the lac UV5 promoter have been identified. In these binary complexes, DNA can adopt two alternate conformations as a function of temperature. Contacts between RNA polymerase and the DNA phosphate backbone are indistinguishable in these two forms, as revealed by prob...
متن کاملProcessivity in early stages of transcription by T7 RNA polymerase.
Immediately following initiation of transcription, T7 RNA polymerase enters a phase in which dissociation of the enzyme-DNA-RNA ternary complex significantly competes with elongation, a process referred to in the Escherichia coli enzyme as abortive cycling [Carpousis, A.J., & Gralla, J.D. (1980) Biochemistry 19, 3245-3253]. Characterization of this process in the T7 RNA polymerase system under ...
متن کاملBase-Specific Recognition of the Nontemplate Strand of Promoter DNA by E. coli RNA Polymerase
RNA polymerase recognizes its promoters through base-specific interaction between defined segments of DNA and the sigma subunit of the enzyme. This interaction leads to separation of base pairs and exposure of the template strand for RNA synthesis. We show that base-specific recognition by the sigma 70 holoenzyme in this process involves primarily nontemplate strand bases in the -10 promoter re...
متن کاملEffects of distortions by A-tracts of promoter B-DNA spacer region on the kinetics of open complex formation by Escherichia coli RNA polymerase.
A-tracts in DNA due to their structural morphology distinctly different from the canonical B-DNA form play an important role in specific recognition of bacterial upstream promoter elements by the carboxyl terminal domain of RNA polymerase alpha subunit and, in turn, in the process of transcription initiation. They are only rarely found in the spacer promoter regions separating the -35 and -10 r...
متن کاملDynamic and structural characterisation of multiple steps during complex formation between E. coli RNA polymerase and the tetR promoter from pSC101.
Kinetic, functional and structural studies of the recognition of the tetR promoter from pSC101 by E. coli RNA polymerase allowed the characterization of several steps in the specific complex formation and transcription initiation process. First, enzyme and DNA enter in a short life-time complex. An isomerization will convert this unstable complex into a closed stable one where RNA polymerase is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nucleic acids research
دوره 17 13 شماره
صفحات -
تاریخ انتشار 1989